

Grade 8 Overall Claim

The student has demonstrated proficiency in integrating Scientific and Engineering Practices with important Disciplinary Core Ideas and Crosscutting Concepts to scientifically investigate and understand natural phenomena and solve important science and engineering design problems.

Unit 2 Measurement Target: Students are able to apply Science and Engineering Practices with <u>emphasis on</u> analyzing and interpreting data, developing and using models, and using evidence and observable patterns in support of arguments illustrating different characteristics of objects in the solar system, including differences in scale, that the solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them. Students use models to explain patterns of the apparent motion of the sun, the moon, and stars in the sky including eclipses of the sun and the moon, the Earth's spin axis, and seasons.

Unit 2 PE Topic Bundle:

- MS-ESS1-1 Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. [Clarification Statement: Examples of models can be physical, graphical, or conceptual.]
- MS-ESS1-3 Analyze and interpret data to determine scale properties of objects in the solar system. [Clarification Statement: Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system bodies.]
- MS-PS2-4 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. [Clarification Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.] [Assessment Boundary: Assessment does not include Newton's Law of Gravitation or Kepler's Laws.]
- MS-ESS1-2 Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. [Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students' school or state).] [Assessment Boundary: Assessment does not include Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.]

The SIPS Grade 8 Science Claim, Unit 2 Measurement Target, and Unit 2 PE Topic Bundle was developed with funding from the U.S. Department of Education under the Competitive Grants for State Assessments Program, CFDA 84.368A. The contents of this paper do not represent the policy of the U.S. Department of Education, and no assumption of endorsement by the Federal government should be made.

All rights reserved. Any or all portions of this document may be reproduced and distributed without prior permission, provided the source is cited as: Stackable Instructionally-embedded Portable Science (SIPS) Assessments Project. (2023). SIPS Grade 8 Science Claim, Unit 2 Measurement Target, and Unit 2 PE Topic Bundle. Lincoln, NE: Nebraska Department of Education.